霍尔效应测量磁场

李嘉轩

北京大学物理学院天文学系,100871 jiaxuan_li@pku.edu.cn

2017年11月10日

1 利用霍尔效应测量磁场

1.1 实验情况

本实验探究了霍尔效应的基本特性,并用霍尔效应测量了电磁铁的磁化特性与磁感应强度分布。 本实验中使用的仪器有:

- DHJ15HA型直流稳压电源;
- SXG-1B型毫特斯拉计,基本误差为±(1%+0.2mT);
- VC9806+型数字万用表(四位半)、FLUKE 15B型数字万用表(三位半);
- DH1718E-4型直流双路稳压稳流电源;
- ZX21型电阻箱,精度0.1级,额定功率0.25W;
- HL-4型霍尔效应仪。

1.2 验证 U_H 与 I_H 的线性关系

这一步实验中,我控制励磁电流 $I_M = 0.600$ A,霍尔片的位置为 $x_0 = 51.4$ mm, $y_0 = 9.2$ mm。测量霍尔电流 I_H 与霍尔电压 U_H 时使用VC9806+型数字万用表进行测量,档位分别为20mA和200mV;测量励磁电流时则使用了FLUKE 15B型数字万用表。当霍尔电流在1,2端输入输出,在3,4端测量霍尔电压时,测得实验数据见表格1;当霍尔电流在3,4端输入输出,在1,2端测量霍尔电压时,测得实验数据见表格2。

在1,2端输入*I_H*, 3,4端测量*U_H*的情况下,我还对霍尔电压测量的方向进行了探究,改变了装置的 第二个换向开关进行了测量,测量结果表明,测量电压的方向对测量结果影响很小(在0.03mV以内),

I_H (mA)	U_1 (mV)	U_2 (mV)	U_3 (mV)	$U_4 \ (\mathbf{mV})$	U_H (mV)
2.000	7.82	-7.82	8.27	-8.26	8.04
4.000	15.66	-15.62	16.55	-16.50	16.08
6.000	23.52	-23.44	24.87	-24.75	24.15
8.000	31.40	-31.25	33.23	-33.08	32.24
10.000	41.39	-41.62	39.06	-39.29	40.34

表 1: 1,2端输入 I_H , 3,4端测量 U_H , $I_M = 0.600$ A

表 2: 3,4端输入 I_H , 1,2端测量 U_H , $I_M = 0.600$ A

I_H (mA)	U_1 (mV)	U_2 (mV)	U_3 (mV)	$U_4 (\mathbf{mV})$	U_H (mV)
2.000	7.83	-7.84	8.29	-8.29	8.06
4.000	15.67	-15.67	16.56	-16.57	16.12
6.000	23.52	-23.53	24.85	-24.86	24.19
8.000	31.37	-31.38	33.17	-33.16	32.27
10.000	39.27	-39.28	41.50	-41.46	40.38

因此之后的测量均不改变电压的测量方向。

以上测量的U均是霍尔电压与各种附效应的叠加,但可以将四个电压的测量值进行运算,消除大部分附效应的影响。

$$U_1 = U_H + U_0 + U_E + U_N + U_R; (1)$$

$$U_2 = -U_H - U_0 - U_E + U_N + U_R; (2)$$

$$U_3 = U_H - U_0 + U_E - U_N - U_R; (3)$$

$$U_4 = -U_H + U_0 - U_E - U_N - U_R.$$
(4)

(5)

又因为 $U_E \ll U_H$,从而有:

$$U_H = \frac{U_1 - U_2 + U_3 - U_4}{4}.$$

按照这种方法计算U_H,得到表格中U_H的数值。

将表格1与2中 I_H 与 U_H 作图,可得图1。用最小二乘法对数据分别拟合,得到的斜率分别为 $k_1 = 4.038(V/A), k_2 = 4.039(V/A), 二者相差0.001 V/A。$

本实验所用万用表在20mA档位的基本误差为±(0.5% + 4),在200mV的基本误差为±(0.05% + 3)。 由此,可以对误差进行一个估计。取一个比较有代表性的数据点: $I_H = 6.000$ mA, $U_H = 24.19$ mV, 则 $\sigma_{I_H} = 0.034$ mA, $\sigma_{U_H} = 0.04$ mV。因此可以估计图1中斜率的不确定度:

$$\sigma_k = \sqrt{\left(\frac{\sigma_{U_H}}{I_H}\right)^2 + \left(\frac{U_H \sigma_{I_H}}{I_H^2}\right)^2} = 0.027 \text{ V/A}.$$

Linearity between U_H and I_H

图 1: U_H与I_H呈线性关系

因此可以看出, k₁与k₂非常接近,其偏差在误差允许的范围之内。所以我们得到,在磁场B不变的情况下,霍尔电压U_H与I_H成正比,且比例系数K_H与霍尔电流穿过的方向无关。这与我们理论的解释相一致,理论上K_H只与半导体的载流子浓度、载流子电荷数以及霍尔片厚度有关,与霍尔电流的方向无关。

1.3 计算霍尔元件的灵敏度K_H

在这一步实验中,我固定霍尔电流 $I_H = 10.000$ mA,改变励磁电流 I_M ,测量 U_H ,同时使用毫特斯 拉计测量B。在使用毫特斯拉计测量磁感应强度B时,我先将表笔固定在待测位置附近,然后稍稍转动 表笔,调整磁感应强度与霍尔片表面法向的夹角,然后记录下毫特斯拉计显示出的最大值,作为B的 测量值。在进行换向的时候,由于接触电阻不同,电流值会略微偏离10.000 mA,此时我会调整电阻箱 使电流回到10.000 mA再进行测量。测量得到的数据见表格3,其中 U_H 的算法依据与上一节相同。 根 据这些数据,画出 U_H 与B的关系图,即图2。对数据进行最小二乘法拟合,可以得到图中的灰色曲线, 其方程为

$$B (mT) = 5.2673 U_H (mV) - 0.7596.$$
(6)

斜率的表达式可以改写为

$$k = \sum_{i=1}^{11} \frac{(U_{Hi} - \overline{U_H})B_i}{\sum_{i=1}^{11} (B_i - \overline{B})^2} = 5.2673.$$
(7)

拟合给出的相关系数为

r = 0.999992.

根据电表的特性,横坐标U_H的基本误差为±(0.05% + 3),而纵坐标Bz的不确定度就相对偏大。使用 毫特斯拉计进行磁感应强度测量时,由于每次手放的位置、角度、手法不同,引入了许多随机误差, 这里做一个简单估计。每次测量B时,轻微转动毫特斯拉计表笔带来读数的变化大约在1%左右。但

北京大学物理学院 School of Physics, Peking University

I_M (A)	B (mT)	U_1 (mV)	$U_2 \ (\mathbf{mV})$	U_3 (mV)	$U_4 \ (\mathbf{mV})$	U_H (mV)
0.000	-0.4	1.16	-1.40	-1.37	1.14	0.01
0.100	34.4	7.70	-7.94	5.32	-5.57	6.63
0.200	69.5	14.32	-14.57	11.96	-12.20	13.26
0.300	105.0	21.09	-21.34	18.72	-18.96	20.03
0.400	139.5	27.87	-28.13	25.50	-25.76	26.82
0.500	176.5	34.66	-34.90	32.27	-32.53	33.59
0.600	210.3	41.51	-41.74	39.11	-39.35	40.43
0.700	248.0	48.37	-48.62	45.95	-46.20	47.29
0.800	285.0	55.13	-55.39	52.72	-52.97	54.05
0.900	320.4	61.95	-62.22	59.51	-59.77	60.86
1.000	355.1	68.66	-68.92	66.19	-66.45	67.56

表 3: 霍尔电压与励磁电流的测量数据,固定 $I_H = 10.000 \text{ mA}$

图 2: U_H与B关系图

又注意到该毫特斯拉计的基本误差为±(1% + 0.2mT),因此综合考虑的结果是*B*的误差偏大一些。因此将 U_H 作为横坐标进行数据处理是比较合理的。假定 U_H 的误差可以忽略不计,将*B*的不确定度估计为 $\sigma_B = 1\%B$,从而根据课本上的公式以及公式(7)可得:

$$\sigma_k = \sqrt{\sum_{i=1}^{11} \left(\frac{\partial k}{\partial B_i} \sigma_B\right)^2}$$
$$= \sqrt{\sum_{i=1}^{11} \left[0.01^2 B_i^2 \frac{U_{Hi} - \overline{U_H}}{\sum_{i=1}^{11} (U_{Hi} - \overline{U_H})^2}\right]^2}$$
$$= 0.02 .$$

从这个结果可以看出, *U_H*与*B*呈非常好的线性关系。由于这里拟合出的直线并不是一条过原点的 直线, 截距不为0, 所以可以把霍尔元件灵敏度的定义写为

$$K_H = \frac{\mathrm{d}U_H}{I_H \mathrm{d}B}.$$

于是根据最小二乘拟合的结果,我们有:

$$K_H = \frac{\mathrm{d}U_H}{I_H \mathrm{d}B} = \frac{1}{I_H k} = 18.97 \times 10^{-3} \ \mathrm{mV}/(\mathrm{mT} \cdot \mathrm{mA}).$$

 I_H 的不确定度根据数字万用表的基本误差可以估计为 $\sigma_{I_H} = 0.05$ mA。所以:

$$\sigma_{K_H} = \sqrt{\left(\frac{\sigma_{I_H}}{kI_H^2}\right)^2 + \left(\frac{\sigma_k}{I_H k^2}\right)^2}$$
$$= 0.12 \times 10^{-3} \text{ mV/(mT \cdot mA)}.$$

$$K_H = (19.0 \pm 0.1) \times 10^{-3} \text{ mV/(mT \cdot mA)}.$$
 (8)

这里做一个讨论。可以看出当 $I_M = 0.000$ A时,磁场B应该为0,但每次测量的 U_i 还会有非零 值,而且正负不同, U_1 , U_4 为正, U_2 , U_3 为负。附效应中的Ettingshausen效应、Nernst效应、Righi-Leduc效应产生的条件均是 $B \neq 0$ 。因此测量得到U的非零值只能来源于不等位电势差 U_0 。根据式(1)-(4),我们可以看到,在 U_H , U_E , U_N , U_R 都为0时, $U_1 = U_4 = U_0$, $U_2 = U_3 = -U_0$ 。这一结果恰好与 实验结果相吻合。同时可以对不等位电势差 U_0 的大小做一个估计:

$$U_0 \approx \frac{U_1 + U_4 - U_2 - U_3}{4} = 1.27 \text{ mV.}$$
 (9)

下面讨论一下截距不为零的解决方案。根据课本上提供的消除附效应的办法,最终是没办法消除 U_E 的,即测量得到的 $U = U_E + U_H$ 。所以如果 $B = U_H$ 严格线性的话,应该有 $B = k(U - U_E) = kU - kU_E$ 。所以这样看来,线性拟合出来的截距正反映出 U_E 的大小:

$$U_E = 0.14 \text{ mV}$$

1.4 电磁铁铁芯的磁化曲线

根据上一节算出的 K_H (见式8),加上 $U_H = U - U_E$ 的修正之后,重新计算 B_{cal} ,得到的数据见表格4,其中B为毫特斯拉计测量的数据。可以根据计算出的 B_{cal} 绘制铁芯的磁化曲线,见图3,左边一栏是铁芯的磁化曲线,可以看出,磁化曲线十分线性,反映出该铁芯是性能较好的软磁材料;右边一栏是计算得到的B与毫特斯拉计测量得到B的差值 $\Delta B = B_{cal} - B$ 的分布图,可以看出 ΔB 并不太大。用最小二乘法线性拟合磁化曲线,得到:

 $B(mT) = 356.52 I_M(A) - 1.736$

Magnetization Diagram

图 3: 磁化曲线

1.5 磁感应强度B随位置x的变化曲线

固定霍尔元件的高度 $y_0 = 9.2 \text{ mm}$ 、霍尔电流 $I_H = 10.000 \text{ mA}$ 、励磁电流 $I_M = 0.600 \text{ A}$ 不变,改 变x从40mm到100mm,测量霍尔电压 U_H ,根据之前算得的 K_H 可以反推出B,从而得到B随x变化的分 布图,见图4。我一共测得了49组数据,见表格5。可以从图中看出,磁场在电磁铁中心附近比较均匀, 在边缘位置迅速下降,在离电磁铁中心较远的位置缓慢下降。

2 思考题

1. 关于附效应的讨论。

答: 上文中已经对U₀和U_E进行了讨论。在实验中可以明显感觉到,改变B的方向对测量出的电 压有比较大的影响。从几个附效应产生的原理来看,U_N与U_R与B的方向有关,而与I_H方向无关。 根据式(1)-(4),可以做一个计算:

$$U_0 + U_N + U_R = \frac{U_1 - U_3 + U_4 - U_2}{4}.$$

I_M (A)	U_H (mV)	B_{cal} (mT)	<i>B</i> (mT)
0.000	0.01	0.1	-0.4
0.100	6.63	34.9	34.4
0.200	13.26	69.8	69.5
0.300	20.03	105.4	105.0
0.400	26.82	141.1	139.5
0.500	33.59	176.8	176.5
0.600	40.43	212.8	210.3
0.700	47.29	248.9	248.0
0.800	54.05	284.5	285.0
0.900	60.86	320.3	320.4
1.000	67.56	355.6	355.1

表 4: 利用U_H和I_H重新计算B

表 5: 磁场随x分布情况的测量数据

<i>x</i> (mm)	U_H (mV)	x (mm)	U_H (mV)	x (mm)	U_H (mV)
40.0	41.72	71.0	41.24	79.5	16.81
41.0	41.71	71.5	41.05	80.0	15.52
44.0	41.71	72.0	40.81	80.5	14.27
46.0	41.70	72.5	40.50	81.0	13.35
48.0	41.70	73.0	40.00	81.5	12.64
51.0	41.68	73.5	39.21	82.0	11.77
53.0	41.67	74.0	38.32	83.0	10.60
55.0	41.69	74.5	37.54	84.0	9.72
57.0	41.68	75.0	35.79	85.0	8.89
59.0	41.68	75.5	33.92	86.0	8.30
61.0	41.68	76.0	31.47	88.0	7.26
63.0	41.68	76.5	28.80	90.0	6.59
65.0	41.67	77.0	26.01	92.0	5.98
67.0	41.64	77.5	23.62	94.0	5.51
69.0	41.54	78.0	22.03	98.0	4.69
70.0	41.44	78.5	20.10		
70.5	41.35	79.0	18.24		

图 4: 磁感应强度随位置的变化曲线

由于 $U_N = U_R$ 是由热流造成,所以我们猜测在 I_H 保持恒定时, $U_N + U_R$ 变化不大。根据表格3中的数据($I_H = 10.000$ mA),算得 $U_0 + U_N + U_R$ 的值分别为1.27,1.19,1.18,1.19,1.19,1.19,1.20,1.21,1.21,1.22,1.24;可以看出这些值差别并不大,而且没有明显的变化趋势,与我的猜测相符。

对表格1和表格2中的数据也做相同的计算,可以看出 $U_0 + U_N + U_R$ 随 I_H 的变化趋势,见表格6,从中看出 $U_0 + U_N + U_R$ 的绝对值随 I_H 变大而变大。如果假设 I_H 变大的过程中不等位电势差 U_0 保持不变,则可以看出 $U_N + U_R$ 随 I_H 增加而变大。 I_H 越大,两端焊接点的接触电阻产生的焦耳热就越大,从而热流也越大。这个结果与 U_N 、 U_R 产生原理相符。

I_H (mA)	$U_0 + U_N + U_R$ (1-2端) (mV)	$U_0 + U_N + U_R$ (3-4端) (mV)
2.000	-0.22	-0.23
4.000	-0.44	-0.45
6.000	-0.67	-0.67
8.000	-0.91	-0.89
10.000	-1.17	-1.10

表 6: 附效应的评估

2. 为什么用计算的B作磁化曲线比用直接测量的B更好?

答:因为直接测量B时,毫特斯拉计探测头的放置是用手进行操作的,霍尔片的法向与磁场方向 一定会存在或大或小的夹角,每次测量的位置也不尽相同,同时测量还会引入其他的一些随机 误差。利用表格3的所有数据进行拟合得到灵敏度*K_H*,可以消除掉一些随机误差。进而计算得到 的*B*要比直接测量更准确一些。

3. 在测量 $B - I_M$ 曲线中, $I_M = 0$ 时 U_H 测量端仍有较小的电压,这是为什么?

答:这个问题在正文部分已经做过了分析,见式(9)。对于这个现象还有一个可能的解释,即励磁 电流为0时电磁铁还未完全退磁,可能有残留的磁场,这个磁场带来的U_H要小于U₀的影响,否则 不会出现U₁, U₄为正, U₂, U₃为负的现象。

3 分析讨论与感想

通过本次实验,我了解了霍尔效应的基本知识以及霍尔元件的特性,通过具体的实验数据认识到 了霍尔元件的灵敏度只与它本身的属性有关,而与电流方向无关。更重要的是我学会了一种消除和评 估附效应的方法。本实验中存在4个不同类型的附效应,但是由几个简单公式加加减减就可以消除大部 分附效应,这种技能和思路令人耳目一新。李源老师上课时提出的关于空穴等效的原理也令我印象深 刻,激发了我学习固体物理学的兴趣。感谢李源老师的指导和建议。

参考文献

[1] 吕斯骅, 段家忯, 张朝晖. 新编基础物理实验. 第2版. 北京: 高等教育出版社, 2013.